Prescribed Learning of R.E. Classes

نویسندگان

  • Sanjay Jain
  • Frank Stephan
  • Nan Ye
چکیده

This work extends studies of Angluin, Lange and Zeugmann on the dependence of learning on the hypotheses space chosen for the class. In subsequent investigations, uniformly recursively enumerable hypotheses spaces have been considered. In the present work, the following four types of learning are distinguished: class-comprising (where the learner can choose a uniformly recursively enumerable superclass as hypotheses space), class-preserving (where the learner has to choose a uniformly recursively enumerable hypotheses space of the same class), prescribed (where there must be a learner for every uniformly recursively enumerable hypotheses space of the same class) and uniform (like prescribed, but the learner has to be synthesized effectively from an index of the hypothesis space). While for explanatory learning, these four types of learnability coincide, some or all are different for other learning criteria. For example, for conservative learning, all four types are different. Several results are obtained for vacillatory and behaviourally correct learning; three of the four types can be separated, however the relation between prescribed and uniform learning remains open. It is also shown that every (not necessarily uniformly recursively enumerable) behaviourally correct learnable class has a prudent learner, that is, a learner using a hypotheses space such that it learns every set in the hypotheses space. Moreover the prudent learner can be effectively built from any learner for the class.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prescribed Learning of Indexed Families

This work extends studies of Angluin, Lange and Zeugmann on how learnability of a language class depends on the hypothesis space used by the learner. While previous studies mainly focused on the case where the learner chooses a particular hypothesis space, the goal of this work is to investigate the case where the learner has to cope with all possible hypothesis spaces. In that sense, the prese...

متن کامل

The structure of intrinsic complexity of learning

Limiting identification of r.e. indexes for r.e. languages (from a presentation of elements of the language) and limiting identification of programs for computable functions (from a graph of the function) have served as models for investigating the boundaries of learnability. Recently, a new approach to the study of “intrinsic” complexity of identification in the limit has been proposed. This a...

متن کامل

On the jumps of the degrees below an r.e. degree∗

A perhaps plausible conjecture about distinguishing among some r.e. degrees based on the jumps of degrees below them would prove the rigidity of the r.e. degrees. We show that the conjecture is false by exhibiting, for every c r.e. in and above 0′, distinct r.e. degrees a and b, each with jump c, such that the classes of the jumps of degrees below a and below b are the same.

متن کامل

Machine Induction Without Revolutionary Changes in Hypothesis Size

This paper provides a beginning study of the effects on inductive inference of paradigm shifts whose absence is approximately modeled by various formal approaches to forbidding large changes in the size of programs conjectured. One approach, called severely parsimonious, requires all the programs conjectured on the way to success to be nearly (i.e., within a recursive function of) minimal size....

متن کامل

Partial Learning of Recursively Enumerable Languages

This paper studies several typical learning criteria in the model of partial learning of r.e. sets in the recursion-theoretic framework of inductive inference. Its main contribution is a complete picture of how the criteria of confidence, consistency and conservativeness in partial learning of r.e. sets separate, also in relation to basic criteria of learning in the limit. Thus this paper const...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007